Matching entries: 0
settings...
Flanagan L, Heaphy D, Kennedy J, Leiba R and Rice H (2020), "Development of acoustic “meta-liners” providing sub-wavelength absorption", International Journal of Aeroacoustics., sep, 2020. Vol. 19(6-8), pp. 310-323. SAGE Publications.
Abstract: The sound absorptive performance of a proposed “meta-liner” are investigated in this paper. The structure is composed of closely placed plates connected by openings at alternating locations in a stacked format. This system presents multiple band gaps with high absorption and sub-wavelength behaviour (sample thickness equals 0.04λ), achieved through tortuosity within the design. The acoustic response of the single layer is obtained numerically and with experimental verification under normal incidence. The repeating cellular design allows efficiencies in the viscothermal numerical analysis and using a transfer matrix approach, it is demonstrated that the response of the overall system may be efficiently predicted from a detailed model of a unit cell. Both the transfer matrix method and a full viscothermal model are validated against experimental data as a function of system depth. The analysis gives very satisfactory results which could form the basis for future designs.
BibTeX:
@article{Flanagan2020,
  author = {Lara Flanagan and David Heaphy and John Kennedy and Raphaël Leiba and Henry Rice},
  title = {Development of acoustic “meta-liners” providing sub-wavelength absorption},
  journal = {International Journal of Aeroacoustics},
  publisher = {SAGE Publications},
  year = {2020},
  volume = {19},
  number = {6-8},
  pages = {310--323},
  doi = {10.1177/1475472x20954894}
}
Leiba R, Ollivier F, Marchiano R, Misdariis N, Marchal J and Challande P (2019), "Acoustical Classification of the Urban Road Traffic with Large Arrays of Microphones", Acta Acustica united with Acustica., nov, 2019. Vol. 105(6), pp. 1067-1077. S. Hirzel Verlag.
Abstract: This work is part of a study dealing with city-dwellers' quality of life. Noise is known to be an important factor influencing the quality of life. In order to diagnose it properly, we propose a noise monitoring system of urban areas. It is based on the use of large microphone arrays in order to extract the radiated sound field from each passing-by vehicle in typical urban scenes. A machine learning algorithm is trained so as to classify these extracted signals in clusters combining both the vehicle type and the driving conditions. This system makes it possible to monitor the evolution of the noise levels for each cluster. The proposed system was first tested on passing-by isolated vehicles measurements and then implemented in a real street in Paris (France).
BibTeX:
@article{Leiba2019,
  author = {Raphaël Leiba and François Ollivier and Régis Marchiano and Nicolas Misdariis and Jacques Marchal and Pascal Challande},
  title = {Acoustical Classification of the Urban Road Traffic with Large Arrays of Microphones},
  journal = {Acta Acustica united with Acustica},
  publisher = {S. Hirzel Verlag},
  year = {2019},
  volume = {105},
  number = {6},
  pages = {1067--1077},
  doi = {10.3813/aaa.919385}
}
Misdariis N, Marignier L, Dianoux C and Leiba R (2019), "Experimental validation of uurban traffic noise annoyance model", In ICSV26, 26th International Congress on Sound and Vibration. Montreal, July, 2019.
Abstract: This study deals with noise annoyance in urban environments. It is based on a previous work that resulted in two main outputs. First, a measurement tool that identifies and extracts sonic properties of the main urban noises sources, i.e. the different types of vehicles. Second, a modeling tool that estimates the perceived annoyance level by adapting from the literature, and implementing, a current multi-class psychoacoustic model. The present work follows these outcomes and aims at validating the annoyance estimations given by the model with an experimental approach. A listening test is designed in order to be able to collect perceived annoyance in a virtual environment (in lab test). Sound scenes made of urban soundscapes (background) and vehicles passing-by (foreground) are built and encoded in a 2D-audio immersive format (2D to multichannel algorithm), in order to create a listening experience as ecological as possible. Within this frame, an important experimental protocol is designed in order to measure the perceived annoyance caused by each synthesized sound scene and to control the cognitive load (attention on a list of words to play back afterwards) of the participants. The first rounds of data analysis show consistent results, especially in terms of influence of sound level or source typicality on the measured annoyance. A deeper round of analysis is currently being processed in order to examine the fine correlation between measured and predicted annoyance values, with regards to psychoacoustic features of source signals. All the results will be presented and discussed in the course of the conference.
BibTeX:
@inproceedings{Misdariis2019,
  author = {Nicolas Misdariis and Lucie Marignier and Camille Dianoux and Raphaël Leiba},
  title = {Experimental validation of uurban traffic noise annoyance model},
  booktitle = {ICSV26, 26th International Congress on Sound and Vibration},
  year = {2019}
}
Misdariis N, Marignier L, Dianoux C and Leiba R (2019), "Community Noise Quality Assessment (Annoyance) by means of a Virtual Audio Environment", InterNoise 2019. Madrid, June, 2019.
Abstract: This study deals with community noise quality assessment (annoyance) of urban environments. It is based on a previous work that resulted in: a) a road-traffic vehicle audio signals extraction tool, allowing to estimate different sonic properties; b) a modeling tool that estimates the perceived annoyance level by adapting a current multiclass psychoacoustic model, given in the literature. The present work follows these outputs and aims at validating experimentally the annoyance estimations. A listening test is designed in order to be able to collect perceived annoyance in a virtual environment. Sound scenes made of urban soundscapes (background) and vehicles pass-by (foreground) are built and encoded in a 2D to multichannel algorithm, in order to create a listening experience as ecological as possible. Then, a consistent experimental protocol is designed in order to measure the perceived annoyance caused by each synthesized sound scene. The focus is put on the spatial audio environment that is used for the perceptual experiment. Especially, urban sound scene synthesis methods and tools are presented. Results from the perceived naturalness and immersion collected during the test are presented and analyzed. The global issue addressed by the use of virtual reality in laboratory experiments is finally discussed.
BibTeX:
@inproceedings{Misdariis2019a,
  author = {Nicolas Misdariis and Lucie Marignier and Camille Dianoux and Raphaël Leiba},
  title = {Community Noise Quality Assessment (Annoyance) by means of a Virtual Audio Environment},
  journal = {InterNoise 2019},
  year = {2019}
}
Leiba R (2017), "Conception d'un outil de diagnostic de la gêne sonore en milieu urbain". Thesis at: Université Pierre & Marie Curie - Paris 6., December, 2017.
BibTeX:
@phdthesis{Leiba2017,
  author = {Leiba, Raphaël},
  title = {Conception d'un outil de diagnostic de la gêne sonore en milieu urbain},
  school = {Université Pierre & Marie Curie - Paris 6},
  year = {2017},
  url = {http://hal.upmc.fr/tel-01688847}
}
Leiba R, Ollivier F, Marchal J, Misdariis N and Marchiano R (2017), "Large array of microphones for the automatic recognition of acoustic sources in urban environment", In InterNoise. Hong-Kong
BibTeX:
@inproceedings{Leiba2017a,
  author = {Raphaël Leiba and François Ollivier and Jacques Marchal and Nicolas Misdariis and Régis Marchiano},
  title = {Large array of microphones for the automatic recognition of acoustic sources in urban environment},
  booktitle = {InterNoise},
  year = {2017}
}
Leiba R, Ollivier F, Marchal J, Misdariis N and Marchiano R (2017), "Utilisation d'antennes à grand nombre de microphones pour la reconnaissance automatique de sources sonores en environnement urbain", Acoustique & Technique., Nov., 2017.
BibTeX:
@article{Leiba2017b,
  author = {Raphaël Leiba and François Ollivier and Jacques Marchal and Nicolas Misdariis and Régis Marchiano},
  title = {Utilisation d'antennes à grand nombre de microphones pour la reconnaissance automatique de sources sonores en environnement urbain},
  journal = {Acoustique & Technique},
  year = {2017}
}
Leiba R, Ollivier F, Marchiano R, Misdariis N and Marchal J (2016), "Imagerie acoustique en milieu urbain : de la mesure à la perception du paysage sonore", In CFA / VISHNO 2016.
Comment: C F A / V I S H N O 2 0 1 6 Imagerie acoustique en milieu urbain : de la mesure a` la perception du paysage sonore R. Leibaa, F. Ollivierb, R. Marchianoa, N. Misdariisc et J. Marchala aInstitut d’Alembert, Sorbonne Universite´, UPMC, CNRS, UMR 719, 2 Place de la gare de ceinture, 78210 Saint Cyr L’Ecole, France bCNRS, UMR 7190, Institut Jean Le Rond d’Alembert, Sorbonne Universite´s, UPMC Univ Paris 06, 75005 Paris, France cSTMS Ircam-CNRS-UPMC, 1 Place Igor-Stravinsky, 75004 Paris, France raphael.leiba@upmc.fr
BibTeX:
@inproceedings{Leiba2016,
  author = {R. Leiba and F. Ollivier and R. Marchiano and N. Misdariis and J. Marchal},
  title = {Imagerie acoustique en milieu urbain : de la mesure à la perception du paysage sonore},
  booktitle = {CFA / VISHNO 2016},
  year = {2016}
}
Leiba R, Ollivier F, Marchiano R, Misdariis N and Marchal J (2016), "Urban acoustic imaging : from measurement to the soundscape perception evaluation", In INTER-NOISE.
Comment: INTER-NOISE 2016 Urban acoustic imaging : from measurement to the soundscape perception evaluation Raphaël LEIBA∗1,2, François OLLIVIER1, Régis MARCHIANO1, Nicolas MISDARIIS2, and Jacques MARCHAL1 1Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond ∂’Alembert, France 2STMS Ircam-CNRS-UPMC, France ABSTRACT Characterising the urban sonic environment is usually done by measuring the energetic indicators such as the average A-weighted level. The European 2002/49/EC directive compels large cities to establish noise maps and pursue action plans aimed at reducing the percentage of citizens exposed to excessive noise levels. In parallel the soundscape concept introduced by Raymond Murray Schafer aims to quantify the urban sonic environment with a global approach taking into account the nature of sources, the context of listening or the habituation. In a complementary approach, our work seeks to quantify the urban soundscape locally using acoustic level maps produced using antennas with a very large number of microphones (up to 256). This method seeks to detect and locate the numerous sources potentially present in the area of interest, but also to assess their instantaneous and averaged acoustic level and spectrum. This paper presents the experimental set-up implementing acoustic arrays based on digital MEMS microphones together with their digital recording system. We present the analysis of a benchmarking campaign led to build a database characterizing various vehicles in different urban-like scenarios. Finally, we investigate new methods so as to combine these objective data and improved annoyance models. 1. INTRODUCTION The European directive 2002/49/CE [1] requires from large cities the creation of strategic noise maps and action plans. Therefore, local governments have to invest in improving the sonic environment in their city. Besides regulation outcomes, the development of eco-neighborhoods shows the growing interest of city dwellers themselves to improve the quality of their urban environment. Standard noise maps provide tangible information but have several limitations. Firstly they distinguish between different sources of noise (road, rail, aircraft or industrial) instead of providing a global information; secondly, the noise exposure is averaged over the time. The Harmonica project [2] proposed a new index to evaluate the sonic environment. It is based on the A-weighted level variation over time and consists of two sub-indices: the background noise (BGN) and the occurence of sound events (EVT). The summation of these two indices ranges from 0 to 10. Mietlicki et al. [2] showed that there is a good agreement between the index value and the city dwellers feeling. Such as Marquis-Favre et al. [3], Mietlicki et al.[2] showed that the perceived annoyance cannot be properly evaluated through the sole averaged A-weighted SPL. These results enforce Shafer’s point of view. Indeed, he writes [4] that “Only an overall assessment of the acoustic environment can give us the means to improve the sound orchestration of the world” and proposes to focus on determining whether the sound is annoying or pleasant in the so called soundscape before thinking of reducing it’s intensity. He added that “the best legislation against the noise in our time will be the one that will bring together quantitative and qualitative dispositions”. Hiramatsu [5] confirms the interest of the soundscape approach in relation to the noise maps expressed in Lden. He insists on the fact that sound source identification and sound event detection give a more holistic information. In all those approaches analysing the sound sources is a key point. It seems essential to be able to distinguish all the individual sound sources in a complex sound scene and analyse them. Our approach consists in carrying out the identification and quantification of noise sources in the city from acoustic imaging techniques. Noise annoyance caused by these sources is studied afterwards through ∗raphael.leiba@upmc.fr 1

BibTeX:
@inproceedings{Leiba2016a,
  author = {Raphaël Leiba and François Ollivier and Régis Marchiano and Nicolas Misdariis and Jacques Marchal},
  title = {Urban acoustic imaging : from measurement to the soundscape perception evaluation},
  booktitle = {INTER-NOISE},
  year = {2016}
}
Marchiano R, Druault P, Leiba R, Marchal J, Ollivier F, Valeau V and Vanwynsberghe C (2016), "Localisation de sources aéroacoustiques par une méthode de retournement temporel tri-dimensionnelle", In CFA / VISHNO 2016.
BibTeX:
@inproceedings{Marchiano2016,
  author = {Régis Marchiano and Philippe Druault and Raphaël Leiba and Jacques Marchal and François Ollivier and Vincent Valeau and Charles Vanwynsberghe},
  title = {Localisation de sources aéroacoustiques par une méthode de retournement temporel tri-dimensionnelle},
  booktitle = {CFA / VISHNO 2016},
  year = {2016},
  note = {(sans acte)}
}
Leiba R, Ollivier F, Marchiano R, Misdariis N and Marchal J (2015), "Imagerie acoustique en milieu urbain : de la mesure à la perception du paysage sonore", In JJCAB 2015.
Comment: Imagerie acoustique en milieu urbain : de la mesure à la perception du paysage sonore Raphaël Leiba1,2, François Ollivier1, Régis Marchiano1, Nicolas Misdariis2, Jacques Marchal1 1Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris 2STMS Ircam-CNRS-UPMC, F-75004 Paris Travaux réalisés dans le cadre de la chaire d’excellence “Mobilité et Qualité de Vie en Milieu Urbain” Contexte Perception de l’environement sonore - Comment quantifier la gêne sonore ? Cartes stratégiques de bruit ou écoquartiers, la prise en compte de la gêne sonore en milieu urbain dans les politiques de la ville est réelle. Mais beaucoup de chemin reste à faire pour réa- liser de réelles cartes de la gêne sonore. Système expérimental - Mégamicros Antennes de microphones MEMS (Micro Electronic and Mechanical System) à sortie numérique. 140 95 1 120 90 100 90 85 80 80 70 9,1L 5 60 60 80 8,1 50 40 40 30 75 20 20 L 10 95 70 0 0 Exemple d’indice Harmonica [3] 65 -20 0 100 200 300 400 500 600 10 Hz 100 Hz 1 kHz 10 kHz Temps (s) Fréquences Harmonica = BGN + EVT Un microphone MEMS et son conditionnement Courbes d’isosonie de Fletcher - Niveau instantané (trait plein), niveaux de bruit de 0 < Harmonica < 10 Niveau sonore perçu équivalent - [2] fond L95 et d’émergence L BGN = 0.2 x (LA95eq - 30)5 Mesure de 10 minutes sur le quai St-Bernard (Paris) EVT = 0.25 x (LAeq - LA95eq) Le système Mégamicros a été développé au sein du labo- ratoire et se base sur un boîtier qui agrège les données et les envoie à un ordinateur par USB. Résultats Antenne de 128 microphones Réseau de microphones ME MS Boitier Mégamic ros Retrouvez la vidéo en flashant ce code : PC interface USB2.0 Schéma fonctionnel du système d’acquisition Mégamicros [1] Mesure au dessus du quai St-Bernard (Paris) le 3 mars 2015 Superposition d’une image acoustique (Linst en dB) et de l’image d’une caméra Cette technologie permet de créer des formes d’antennes Véhicules légers à vitesse constante : source de bruit principale = contact pneu/chaussée s’adaptant aux besoins : antennes 1D, 2D ou 3D, très denses ou très grandes. Antenne de 256 microphones Retrouvez la vidéo en flashant ce code : Mesure au passage de vehicule sur piste le 1er septembre 2015 Image acoustique (Linst en dB) calculée sur un plan verticale 20×3 m Véhicules légers en accélération : source principale = moteur Travaux futurs • Mesures au passage de véhicules sur piste avec une antenne de 256 microphones, ⇒ Classification automatique : type véhicules, condition de roulage, niveau sonore, etc. • Indicateur de la gêne sonore à exploiter, • Sélection des lieux caractéristiques de l’environnement urbain et y réaliser des mesures. Antenne linéaire de 128 microphones installée en haut de la tour Zamansky (90m) - Campus de Jussieu - Paris Références [1] C. VANWYNSBERGHE, R. MARCHIANO, F. OLLIVIER, P. CHALLANDE, H. MOINGEON et J. MARCHAL : Design and implementation of a multi-octave-band audio camera for realtime diagnosis. Applied Acoustics, Mar 2015. [2] ISO 226:2003 : Acoustics — normal equal-loudness-level contours, 2003. [3] F. MIETLICKI, C. MIETLICKI, C. RIBEIRO, P. GAUDIBERT, B. VINCENT et V. GISSINGER : www.noiseineu.eu: New tools to inform the public about environmental noise in cities and to assist decision-making. In EuroNoise, 2015. mise en série CAN CAN CAN CAN Voies analog iques Niveau sonore (dB) L A 1s FIFO

BibTeX:
@inproceedings{Leiba2015,
  author = {Raphaël Leiba and François Ollivier and Régis Marchiano and Nicolas Misdariis and Jacques Marchal},
  title = {Imagerie acoustique en milieu urbain : de la mesure à la perception du paysage sonore},
  booktitle = {JJCAB 2015},
  year = {2015},
  note = {Poster}
}
Marchal J, Legris M, Mopin I, Verneil A-L, Leiba R, Garot M, Dana M and L.Robert (2014), "Sonar Latéral à But Pédagogique", In Congrès Français d'Acoustique.
Comment: Sonar Late´ral a` But Pe´dagogique J. Marchala, M. Legrisb, I. Mopinb, A.-L. Verneilc, R. Leibac, M. Garotc, M. Danac et L. Robertc aUPMC Univ Paris 06, UMR7190, Institut Jean Le Rond d’Alembert, 2 place de la Gare de Ceinture, 78114 Saint-Cyr-L’Ecole, France bENSTA Bretagne, UMR 6285, Lab-STICC, STIC-OSM, 2 rue Franc¸ois Verny, 29806 Brest Cedex 09, France cUPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France jacques.marchal@upmc.fr

BibTeX:
@inproceedings{Marchal2014,
  author = {J. Marchal and M. Legris and I. Mopin and A.-L. Verneil and R. Leiba and M. Garot and M. Dana and L.Robert},
  title = {Sonar Latéral à But Pédagogique},
  booktitle = {Congrès Français d'Acoustique},
  year = {2014}
}
Misdariis N, Marchiano R, Susini P, Ollivier F, Leiba R and Marchal J (2014), "Mobility and life quality relationships – Measurement and perception of noise in urban context", In INTER-NOISE. Melbourne
Abstract: Noise in urban context is one of the main concern in terms of societal impact. In fact, sound environment is adressing issues at various levels: transmission of information, social relations, perception of comfort, and in the worst cases, health effects on city-dwellers. The paper will present the first steps of an academic research concerning measurement and perception of noise in urban context – otherwise integrated into the broader framework of a Chair of Research dealing with relationships between mobility and quality of life in urban environments, in terms of air/sound pollution and healthcare. The following content will be developed : i/ elements of a state-of-the-art in the joined fields of measurement/simulation and perceptual evaluation of urban soundscapes; ii/ first planned axes of research focusing on interactions between elementary sources mainly coming from urban mobility – assuming that transportation is one of the main source of noise in the city – with their context either in physical and perceptual points of view; iii/ according to the work progress, first results concerning preliminary experiments conducted on dedicated urban environments. Keywords: Urban Noise, Measurement, Perception I-INCE Classification of Subjects Number(s): 63.2; 68.2; 52.3
BibTeX:
@inproceedings{MISDARIIS2014,
  author = {Nicolas Misdariis and Regis Marchiano and Patrick Susini and François Ollivier and Raphael Leiba and Jacques Marchal},
  title = {Mobility and life quality relationships – Measurement and perception of noise in urban context},
  booktitle = {INTER-NOISE},
  year = {2014}
}